我们再来看看12寸臂与9寸臂失真曲线的差别。失真率12寸臂比9寸臂最大有27.5%优化!!这已经蛮大了。
Arm Length Because increasing the effective length of the pickup arm reduces the curvature of the arc through which the stylus traverses the record, an optimally aligned 12" arm generates less LTE distortion than an optimally aligned 9" alternative. This is why 12" arms were traditionally favored for professional disc-transcription purposes.
But because the optimum overhang and offset are both smaller for a 12" arm, a given misalignment will have a larger effect. So let's repeat the exercise above and see what transpires with alignment tolerances of ?0.5mm and ?0.5° in the case of a longer arm. For an arm of 305mm effective length, the optimum alignment requires an overhang of 12.19mm and an offset of 17.15° (compared to 16.43mm and 23.02° for a 230mm arm), and gives the distortion plot shown in red in fig.6, with the equivalent for a 230mm arm (
ie, the red trace from fig.3) shown in light blue for comparison. The additional 75mm of effective length has cut the peak second-harmonic distortion (at 10cm/s RMS recorded velocity) from 1.07% to 0.78%, a reduction of 27.5%. So far, so good.
Fig.7 shows the effect on the 305mm arm's distortion plot of misalignments of +0.5mm/–0.5° and –0.5mm/+0.5° (red and blue traces, respectively), again with the 230mm equivalents in the background for comparison (footnote 16). If we take the maximum distortion in each case, the results are as in Table 1. From these we can see that, in the +0.5mm/–0.5° case, the 305mm arm's improvement in peak distortion decreases to 13%, and in the –0.5mm/+0.5° case to 15%. If we increase the alignment tolerance to ?1.0mm and ?1.0°, then the 305mm arm's advantage is reversed in the +1.0mm/–1.0° case, and cut to 9% in the –1.0mm/+1.0° case—so honors are now about even with a 230mm arm on the basis of maximum distortion.
Table 1 Misalignment | Maximum Distortion (%) |
230mm arm | 305mm arm |
+0.5mm/–0.5° | 2.36 | 2.06 |
–0.5mm/+0.5° | 1.82 | 1.55 |
+1.0mm/–1.0° | 3.07 | 3.35 |
–1.0mm/+1.0° | 2.65 | 2.41 |
Whether a 12" arm's improvement in LTED is worth its higher effective mass, and reduced bending and torsional stiffness, has always been a judgment call. What these figures show is that unless a 12" arm is very carefully aligned, even that advantage can easily be squandered